35 research outputs found

    Input-driven chaotic dynamics in vortex spin-torque oscillator

    Full text link
    A new research topic in spintronics relating to the operation principles of brain-inspired computing is input-driven magnetization dynamics in nanomagnet. In this paper, the magnetization dynamics in a vortex spin-torque oscillator (STO) driven by a series of random magnetic field are studied through a numerical simulation of the Thiele equation. It is found that input-driven synchronization occurs in the weak perturbation limit, as found recently. As well, chaotic behavior is newly found to occur in the vortex core dynamics for a wide range of parameters, where synchronized behavior is disrupted by an intermittency. Ordered and chaotic dynamical phases are examined by evaluating the Lyapunov exponent. The relation between the dynamical phase and the computational capability of physical reservoir computing is also studied.Comment: 11 pages, 4 figure

    Spintronic reservoir computing without driving current or magnetic field

    Full text link
    Recent studies have shown that nonlinear magnetization dynamics excited in nanostructured ferromagnets are applicable to brain-inspired computing such as physical reservoir computing. The previous works have utilized the magnetization dynamics driven by electric current and/or magnetic field. This work proposes a method to apply the magnetization dynamics driven by voltage control of magnetic anisotropy to physical reservoir computing, which will be preferable from the viewpoint of low-power consumption. The computational capabilities of benchmark tasks in single MTJ are evaluated by numerical simulation of the magnetization dynamics and found to be comparable to those of echo-state networks with more than 10 nodes.Comment: 13 pages, 5 figure
    corecore